PIRM 1;: Co-Simulation
of an Avionics Device

SDDEC21-02: Matt Dwyer, Braedon Giblin, Cody Tomkins, Spencer Davis, & Prince
Tshombe

Faculty Advisor: Dr. Phillip Jones
Client: Matthew Weber (Collin's Aerospace)
Website: https://sddec21-02.sd.ece.iastate.edu/

https://sddec21-02.sd.ece.iastate.edu/

Hardware/Software Co-Simulation

e Simulate the processor your code is running on (Embedded ARM Cortex-A9)
o Processor emulator (QEMU)
o Buildroot Linux
e Simulate the hardware interactions and mock all calls made
o Hardware implementation (SystemC)
o Hardware transaction modeling (TLM)
e Connect the two simulated environments (FPGA PS-PL connection)
o Xilinx Remote Port

AXI

K

LibSystemCTLM-SoC M_AXI
Your IP

Remote ¢Remote PortIPC 5 Remote
Protocol

Protocol
S_AXI

Xilinx QEMU |

Mixed Simulation Environment

Problem Statement

e Steep learning curve for beginners
o Few documented example projects
o Lacking basic documentation
e Desire for additional flexibility
o Once the simulation has been setup,
difficult to manipulate data “Generated” by
simulated hardware
o Desire to “feed” data into the system from
an external source
o Processing System (QEMU) being none the
wiser, assumes it is a real device

How to set up and run the Co-Simulation Demo

This demonstration shows how to compile and run the Co-Simulation demo of Buildroot in QEMU with a simulated device in SystemC. This
configuration is tested working for Ubuntu 18.0.4 and assumes that a cosim directory is created in your home directory. This walkthrough also
assumes that the device being emulated by QEMU is the Xilinx Zyng-7000 SoC. This SoC seemed like a good candidate but the concept can
apply to any QEMU machine which plugs in a compatible remoteport bus interface.

Dependencies
Below are the dependencies needed to compile all the libraries in this demo:

sudo apt update
sudo apt install cmake gmake gcc gemu-kvm gemu-system gemu-user-static verilator

Setup and Compilation
Run these commands to clone and build the necessary repos (~/cosim assumed as the base directory).
Create the base directory

mkdir ~/cosim

SystemC Setup

cd ~/cosim

SYSC_VERSION=systemc-2.3.2

wget https://www.accellera.org/images/downloads/standards/systemc/systemc-2.3.2. tar.gz
tar xf ${SYSC_VERSION}.tar.gz && cd ${SYSC_VERSION}/

Intended Users i Gollins
Aerospace

e Corporations who simultaneously

develop hardware/software solutions
o Aerospace, Defense, Industrial
Automation, Automotive

e Users looking to extensively test
hardware and software independently
of one another

e People interested in applying
Co-Simulation to their own project
who are stymied by the barrier of
entry

https://commons.wikimedia.org/wiki/File:NASA_logo.svg
https://upload.wikimedia.org/wikipedia/commons/6/6e/John_Deere_Logo.png

Functional Requirements/Deliverables

e Documentation
o Document an initial environment setup
walkthrough
o Create an additional demo to for a more
complex system
e External Data Source/Modeling Tool
o Model an I>C Bus in SystemC and
corresponding test application
o Drive a simulated IMU device over I?C with
static data
o Develop Remote port custom
communication tunnel for external data
source tool
o Demonstrate an off-the-shelf Linux IMU
driver running on QEMU, working with
modeled hardware

PR has been submitted, being revised

PPM demo working, publishing soon

In progress - HIGH RISK

In progress

Completed functional demo last semester

IMU and driver selected. Required for our final
MVP demonstration

Open Sourced Goal

e Involve the open source community as much as possible

o Work with existing repository maintainers to push work that adheres to their standards and
their vision for the future of the repository

Make contributions that will be meaningful to future users

o Ensure our demos and use cases are general enough so that any user of the repository in the
future will find value in our work

e All of our changes should be merged into the Xilinx Cosim repository by the
end of the semester

Getting Started Documentation

11 Open

it <> Code ~

Highest Risk Todos

[°C IMU Implementation Libremoteport Data Input

e Need to mock an I?C Master device

‘:)I;r i}lflsl’he;nc that will be recognized documented library

e Device timings need to match e Itisnot clear if we can have

Linux driver expects multiple ports driving the SystemC
e Synchronization : model

between controller e Will likely need synchronization

and QEMU may be with the existing simulation
difficult

e Libremoteport is a complex, poorly

Future Goals

e Construct extendable implementation of SystemC external connection
interface

Provide in depth example of IMU I?C device being emulated with interface
Create visualized/graphical demonstration of interface and IMU

Author supporting documentation (Dockerfile, remote-port, examples)
UART Implementation for Linux Serial System

Document project thoroughly (Website, in-depth presentations, publish
implementation source)

